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Abstract
Macroscopic polarization P and magnetization M are the most fundamental concepts in any
phenomenological description of condensed media. They are intensive vector quantities that
intuitively carry the meaning of dipole per unit volume. But for many years both P and the
orbital term in M evaded even a precise microscopic definition, and severely challenged
quantum-mechanical calculations. If one reasons in terms of a finite sample, the electric
(magnetic) dipole is affected in an extensive way by charges (currents) at the sample boundary,
due to the presence of the unbounded position operator in the dipole definitions. Therefore P
and the orbital term in M—phenomenologically known as bulk properties—apparently behave
as surface properties; only spin magnetization is problemless. The field has undergone a
genuine revolution since the early 1990s. Contrary to a widespread incorrect belief, P has
nothing to do with the periodic charge distribution of the polarized crystal: the former is
essentially a property of the phase of the electronic wavefunction, while the latter is a property
of its modulus. Analogously, the orbital term in M has nothing to do with the periodic current
distribution in the magnetized crystal. The modern theory of polarization, based on a Berry
phase, started in the early 1990s and is now implemented in most first-principle electronic
structure codes. The analogous theory for orbital magnetization started in 2005 and is partly
work in progress. In the electrical case, calculations have concerned various phenomena
(ferroelectricity, piezoelectricity, and lattice dynamics) in several materials, and are in
spectacular agreement with experiments; they have provided thorough understanding of the
behaviour of ferroelectric and piezoelectric materials. In the magnetic case the very first
calculations are appearing at the time of writing (2010). Here I review both theories on a
uniform ground in a density functional theory (DFT) framework, pointing out analogies and
differences. Both theories are deeply rooted in geometrical concepts, elucidated in this work.
The main formulae for crystalline systems express P and M in terms of Brillouin-zone integrals,
discretized for numerical implementation. I also provide the corresponding formulae for
disordered systems in a single k-point supercell framework. In the case of P the single-point
formula has been widely used in the Car–Parrinello community to evaluate IR spectra.
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1. Introduction

Polarization P and magnetization M are fundamental concepts
that all undergraduates learn about in elementary courses [1, 2].
In view of this, it is truly extraordinary that until rather recently
there was no generally accepted formula for both electrical
polarization and orbital magnetization in condensed matter,
even as a matter of principles. Computations of both P and
M for real materials were therefore impossible. It is important
to stress that we are addressing here ‘polarization itself’ and
‘magnetization itself’, while instead linear-response theory has
satisfactorily provided P derivatives over the years and, more
recently, even M derivatives.

In the case of P, a genuine change of paradigm was
initiated by a couple of important papers [3, 4], after which
the major development was introduced by King-Smith and
Vanderbilt in 1992 (paper published in 1993 [5]). Other
important advances continued during the 1990s [6, 7] and
the so-called ‘modern theory of polarization’ has been at a
mature stage for about a decade. Among other things, the
modern theory shed new light on previous linear-response
formulations. Several reviews have appeared in the literature:
the very first one is [8] and the most recent ones are [9, 10].

In the case of M (or, more precisely, of the orbital
contribution to M) a similar breakthrough only occurred in
2005 [11, 12], and the ‘modern theory of magnetization’ is
partly work in progress.

It is worth emphasizing that most ab initio electronic
structure codes on the market, for dealing with either
crystalline or noncrystalline materials, implement the modern
theory of polarization as a standard option. A nonexaustive
list includes ABINIT [13], CPMD [14] CRYSTAL [15], QUANTUM-

ESPRESSO [16], SIESTA [17], and VASP [18]. Implementations
of the modern theory have been instrumental for more than
a decade in the study of ferroelectric and piezoelectric
materials [19–21]. The basic concepts of the modern theory
of polarization have also started reaching a few textbooks [22],
though very slowly; most of them are still plagued with
erroneous concepts and statements.

At variance with the electrical case, the modern theory of
magnetization is still in its infancy. Key developments are
in progress [23–27], and first-principle calculations are just
starting to appear [28, 29].

Macroscopic polarization may only occur in the absence
of inversion symmetry, while macroscopic magnetization
requires the absence of time-reversal symmetry. Another key
difference is that polarization (as a bulk material property)
only makes sense in insulating materials, while macroscopic
magnetization exists both in insulators and metals. A material
is insulating, in principle, only at T = 0, hence the modern
theory of polarization is intrinsically a T = 0 theory. At
variance with this, the modern theory of magnetization can be
extended to T �= 0 [24, 25].

Macroscopic polarization is the sum of two contributions:
electronic and nuclear. Only the first term requires quantum-
mechanical treatment, but it is mandatory to consider the two
terms together, since overall charge neutrality is essential.

Macroscopic magnetization is a purely electronic phe-
nomenon, but it is the sum of two contributions as well:
spin magnetization and orbital magnetization. The latter
occurs whenever time-reversal symmetry is broken in the
spatial wavefunction. For instance, in a ferromagnet the
spin–orbit interaction transmits the symmetry breaking from
the spin degrees of freedom to the spatial (orbital) ones;
the two contributions to the total magnetization can be
resolved experimentally. Other examples include systems in
applied magnetic fields. Whenever the unperturbed system
is nonmagnetic and insulating, the induced magnetization is
100% of the orbital kind.

The modern theory of magnetization also allows
the computation of NMR shielding tensors in condensed
matter [28], in an alternative way with respect to the linear-
response approach (in the long-wavelength limit) currently
used for more than a decade by Mauri et al [30].

2. Macroscopics

2.1. Fundamentals

The basic microscopic quantities inside a material are the local
microscopic fields E(micro)(r) and B(micro)(r), which fluctuate
at the atomic scale. By definition, the macroscopic fields E
and B are obtained by averaging them over a macroscopic
length scale [2]. In a macroscopically homogeneous system
the macroscopic fields E and B are constant, and in crystalline
materials they coincide with the cell average of E(micro)(r) and
B(micro)(r).

The constituent equations of electrostatics and magneto-
statics in continuous media are, to linear order in the fields [1]

D = E+ 4πP; B = H+ 4πM, (1)

where P and M are the macroscopic polarization and
magnetization, respectively. All macroscopic quantities
entering equation (1) may have a spatial dependence only in
inhomogeneous regions, where a net electrical charge density
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ρ(r) and/or a dissipationless current density j(r) pile up
according to

∇ · P(r) = −ρ(r); ∇ ×M(r) = 1

c
j(r). (2)

At an interface between two different homogeneous media P
and M are, in general, discontinuous.

In the simple case of the surface of an homogeneously
polarized and/or magnetized medium, P and M vanish on the
vacuum side. Equations (2) implies the occurrence of a surface
charge and/or a surface current

σsurface = P · n, Ksurface = c M× n, (3)

where n is the normal to the surface. Notice that M is a
well defined quantity for either insulating or metallic materials;
instead P is a nontrivial, material dependent, property only in
insulating materials. In the metallic case σsurface completely
screens any electrical perturbation (Faraday-cage effect), hence
P is trivial and universal.

We transform equations (1) using the dielectric and
magnetic permeability tensors

↔
ε= ∂D

∂E
; ↔

μ= ∂B
∂H

, (4)

P = P0 +
↔
ε −1

4π
E; M =M0 +

↔
μ −1

4π
H. (5)

Because of symmetry reasons, the polarization P0 in a null
E field can be nonzero only if the unperturbed medium
breaks inversion symmetry; analogously, the magnetization
M0 in a null B field can be nonzero only if the unperturbed
medium breaks time-reversal symmetry. For the sake of clarity,
‘unperturbed’ in the previous sentence includes cases where
the solid has indeed a built-in perturbation other than a field
(e.g. macroscopic strain, frozen phonon, and the like).

The modern theory of polarization, at least in its original
form, only addresses P0, the polarization in a null field,
also known (for reasons explained below) as the ‘transverse’
polarization. Quite analogously the modern theory of orbital
magnetization, at the present stage of development, only
addresses M0, the magnetization in a null field.

In condensed matter theory one addresses bulk quantities,
with no reference to real finite samples with boundaries.
The microscopic fields E(micro)(r) and B(micro)(r) are ideally
measurable inside the material, with no reference to what
happens outside a finite sample. Their macroscopic averages
E and B, i.e. the internal (or screened) macroscopic fields,
are therefore the variables of choice for a first-principle
description. It must be realized that, insofar as we address
an infinite system with no boundaries, the macroscopic field
(either E or B) is just an arbitrary boundary condition. To
realize this, it is enough to focus on the electrical case for a
crystalline material. The microscopic charge density is neutral
on average and lattice periodical; the value of E is just an
arbitrary boundary condition for the integration of Poisson’s
equation. The usual choice (performed within all electronic
structure codes) is to impose a lattice periodical Coulomb

potential, i.e. E = 0. Imposing a given nonzero value of E
is equally legitimate (in insulators), although technically more
difficult [31, 32].

In order to study the bulk material properties of a
macroscopically homogeneous system it is quite convenient
to address the infinite system with no boundaries. The above
formulation of electrostatics and magnetostatics is sufficient
and ideally suited for electronic structure theory: there is no
need to address external (or unscreened) fields, as there is no
need to address the auxiliary and unphysical fields D and H.

For instance, the dielectric tensor
↔
ε defined by

equation (4) is best addressed within electronic structure theory
as

↔
ε= 1+ 4π

∂P
∂E
, (6)

where only ‘internal’ quantities (well defined in the bulk
of the sample), and no ‘external’ ones, appear. Obviously,
for a homogeneous material,

↔
ε is a bulk material property,

independent of the sample shape.
There are actually two different dielectric tensors: the

genuinely static one, called
↔
ε 0, and the so-called ‘static high

frequency’, called
↔
ε∞. The latter accounts for the electronic

polarization only, and is also called the ‘clamped-ion’
dielectric tensor. Both are experimentally measurable [33].

2.2. Finite samples and shape issues

Even if there is no need to address finite samples and external
versus internal fields from a theoretician’s viewpoint, such a
digression can be quite instructive given that experiments are
performed over finite samples, often in external fields.

We start with the electrical case. Suppose a finite
macroscopic sample is inserted in a constant external field
E(ext): the microscopic field E(micro)(r) coincides with E(ext)

far away from the sample, while it is different inside because
of screening effects. If we choose an homogeneous sample of
ellipsoidal shape, then the macroscopic average of E(micro)(r),
i.e. the macroscopic screened field E, is constant in the bulk of
the sample.

The shape effects are embedded in the depolarization
coefficients nα , defined in [1], with

∑
α nα = 1; Greek

subscripts indicate Cartesian coordinates throughout. Special
cases are the sphere (nx = ny = nz = 1/3), the extremely
prolate ellipsoid, i.e. a cylinder along z (nx = ny = 1/2, nz =
0), and the extremely oblate one, i.e. a slab normal to z (nx =
ny = 0, nz = 1).

The main relationship between E, E(ext), and P is [1]:

Eα = E (ext)
α − 4πnαPα. (7)

When we consider a free-standing finite system, with no
external field, equation (7) provides, by definition, the
depolarizing field. In the simple case of a slab geometry the
depolarizing field is E = −4πP when P is normal to the slab,
and E = 0 when P is parallel to the slab: this is sketched in
figure 1.

Quite generally, a vector field is called ‘longitudinal’
when it is curl-free, and ‘transverse’ when it is divergence-
free: we analyse P(r) and M(r) as functions of a macroscopic
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Figure 1. Electrical macroscopic polarization P in a slab normal to z,
for a vanishing external field E(ext). Left: when P is normal to the
slab, a depolarizing field E = −4πP is present inside the slab, and
surface charges form, with areal density σsurface = P · n. Right: when
P is parallel to the slab, no depolarizing field and no surface charge is
present.

coordinate across the slab in this respect. The external fields
are set to zero.

When P(r) it is normal to the slab we have Pz = Pz(z)
(independent of xy): hence at the slab boundary ∇ · P �=
0, ∇ × P = 0: the normal polarization is longitudinal.
When P(r) is parallel to the slab we have Px = Px(z)
(independent of xy): hence at the boundary ∇ · P = 0,
∇ × P �= 0: the parallel polarization is transverse (see
figure 1). Looking at equation (5), it is clear that the
transverse polarization coincides with P0, while (for isotropic
permittivity) the longitudinal one is P = P0/ε. These are
the extreme values; for an arbitrary ellipsoidal shape P will
be intermediate between them.

A subtle issue is: which ε is to be used? ε0 or ε∞?
The answer is always ε0, with the only notable exception of
lattice dynamics. If P0 is the polarization of a given ‘frozen
phonon’ at zero field (i.e. transverse), the corresponding
longitudinal polarization (for the same displacements pattern)
is P = P0/ε∞. This follows immediately e.g. from Huang’s
phenomenological theory [34, 35].

Next, we switch to the magnetic case. Again, by
definition, the magnetization normal to the slab is longitudinal
and the parallel one is transverse. According to [1], one has to
replace P with M, E with H, and E(ext) with H(ext) = B(ext).
The analogue of equation (7) is then

Hα = B(ext)
α − 4πnαMα. (8)

We eliminate H by means of equations (1); then for a
uniformly magnetized ellipsoid in zero external field B(ext) the
demagnetizing field is

Bα = 4π(1− nα)Mα. (9)

We consider once more the slab geometry, in which case B =
4πM when M is parallel to the slab, and B = 0 when M is
normal to the slab: this is sketched in figure 2. In the case of
isotropic permeability equations (4) and (5) lead to

M = M0 + μ− 1

4πμ
B. (10)

It follows immediately that M = M0 when the magnetization is
normal to the slab (longitudinal), while it is easily verified that

Figure 2. Macroscopic magnetization M in a slab normal to z, for a
vanishing external field B(ext). Left: when M is normal to the slab, no
depolarizing field and no surface current is present. Right: when M
is parallel to the slab, a demagnetizing field B = 4πM is present
inside the slab, and dissipationless currents Ksurface = c M× n flow
at the surfaces.

M = μM0 when the magnetization is parallel (transverse). In
analogy to the electrical case, these are the extreme values; for
an arbitrary ellipsoidal shape M will be intermediate between
them.

It is customary to write μ = 1 + 4πχ , where χ is the
magnetic susceptibility. This can be positive or negative, but
is fairly small, with the notable exception of ferromagnetic
materials in a neighbourhood of the phase transition [1]. In
most cases we can expand equation (10) as

Mα � M0,α + χBα = M0,α + 4πχ(1− nα)Mα. (11)

For a spherical sample (nα = 1/3) the leading-order shape
correction is

M �
(

1+ 8π

3
χ

)

M0. (12)

Finally, we summarize the slab results and we emphasize
the key difference when the slab is in zero external fields.
In the electrical case the transverse (i.e. parallel to the slab)
polarization P = P0 occurs in zero E (internal) field, while in
the magnetic case it is the longitudinal (i.e. normal to the slab)
magnetization M =M0 which occurs in zero B (internal) field.
This is confirmed by the absence of surface charges and surface
currents in these geometries (see figures 1 and 2).

3. Microscopics

Intuitively, the macroscopic polarization P and magnetization
M should be intensive vector properties carrying the meaning
of electric/magnetic dipole per unit volume, but their definition
in terms of microscopic quantities was an unsolved problem
until the 1990s.

At a very elementary level, P is addressed by means of
the time-honoured Clausius–Mossotti model [36], where the
charge distribution of a polarized dielectric is regarded as
the superposition of localized contributions, each providing
an electric dipole. The model applies only to the extreme
case of molecular crystals, where the polarizable units
can be unambiguously identified; for any other material—
including the alkali halides—such decomposition is severely
nonunique [10, 37]. Incidentally, we anticipate that the modern
theory indeed recovers the Clausius–Mossotti limit whenever it
applies (see the end of section 6.5).
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In a general crystalline insulator the electron distribution is
periodic and delocalized over the whole unit cell, most notably
in covalent materials. The popular textbooks typically attempt
a microscopic definition of P in terms of the dipole moment per
cell [33, 38], but such approaches are deeply flawed because
there is no unique choice for the cell boundaries [39, 10].
Only a few undergraduate textbooks are free from such flaws
(e.g. Marder [22]).

Macroscopic magnetization M is the sum of two terms,
which are unambiguously defined in nonrelativistic (and
semirelativistic) quantum mechanics: spin magnetization
M(spin) and orbital magnetization M(orb). Experimentally,
magneto-mechanical measurements, based on the Einstein–de
Haas effect, provide the two terms separately. For instance,
the values of M(spin) and M(orb) for the three ferromagnetic
metals (Fe, Co, and Ni) have been accurately known for half
a century [40].

From the viewpoint of the present review, M(spin) is a dull
quantity. Electronic structure codes routinely compute the spin
density, which is a simple lattice periodical function. Its cell
average (times a trivial factor) coincides with M(spin). In other
words, a ‘dipolar density’ is unambiguously identified, while
the same does not happen in the orbital case.

For a finite sample, any surface effect contributes
nonextensively to the total spin, and therefore cannot affect
M(spin) in the thermodynamic limit. The opposite happens for
M(orb), which suffers from the same problems as P. In the
following, we will not address M(spin) further, and we will use
the symbol M to indicate M(orb) only.

Given the intuitive meaning of P and M, it is tempting to
define them as the dipole moment of a sample, divided by the
volume V :

P = d
V
= 1

V

∫

dr rρ(micro)(r),

M = m
V
= 1

2cV

∫

dr r× j(micro)(r),

(13)

where ρ(micro)(r) and j(micro)(r) are the microscopic charge
and (orbital) current densities. Notice that there is no such
thing as a ‘dipolar density’: the basic microscopic quantities
are ρ(micro)(r) and j(micro)(r). If the sample is uniformly
polarized/magnetized, then the microscopic charge/current
averages to zero in the bulk of the sample, while at the
sample boundary a net charge piles up and/or a dissipationless
current flows, in agreement with the macroscopic equation (3).
Phenomenologically P and M are bulk material properties,
while from the above considerations they apparently are
surface properties. One may wonder, for instance, whether
altering the surface (and only the surface) may result in a
change of P and/or of M. This very fundamental problem was
unsolved until the early 1990s for the electrical case, and until
2005 for the magnetic case.

Condensed matter theory universally adopts periodic
(a.k.a. Born–von Kármán) boundary conditions (PBCs); in the
special case of crystalline materials, PBCs lead to the Bloch
theorem. One of the virtues of PBCs is that the system by
construction has no surface. Therefore whatever one defines
or computes within PBCs is by definition ‘bulk’: any surface

effect is ruled out. But PBCs do not solve our problem, since
the (unbounded) position operator r entering equations (13) is
a ‘forbidden’ operator, incompatible with PBCs. The issue
is then how to define and compute P and M within PBCs
by means of formulae quite different from equations (13);
therein, in fact, ρ(micro)(r) and j(micro)(r) are assumed to vanish
exponentially outside the finite sample. In the crystalline
case, the basic ingredient of such formulae must be the Bloch
orbitals of the occupied bands, while the forbidden r operator
must not appear.

One important tenet of the modern theory is worth
stressing: the macroscopic polarization (magnetization) of
a uniformly polarized (magnetized) crystal has nothing to
do with the lattice periodical charge (current) distribution—
despite contrary statements in several textbooks, Actually, this
tenet stems already from classical physics, as emphasized
e.g. in the reference work of Hirst [41].

4. DFT, pseudopotentials, and more

The present work reviews the formulations which provide
macroscopic electrical polarization and orbital magnetization
in condensed matter in terms of single-particle orbitals, which
assume the Bloch form in the crystalline case. The formulae
are exact for noninteracting electrons, but the obvious aim is
to implement them with Kohn–Sham (KS) orbitals, in a given
DFT first-principle framework.

Since in this work we need to distinguish between
insulators and metals, we stress that we mean ‘KS insulator’
and ‘KS metal’ throughout: that is, we discriminate whether
the KS spectrum is gapped or gapless. In the class of ‘simple’
(i.e. computationally friendly) materials a genuine insulator
(metal) is also a KS insulator (metal), although pathological
cases (computationally unfriendly) do exist.

Having specified this, the key issue is then: does the KS
polarization/magnetization coincide with the physical many-
body one? The answer is subtle, and is different whether
one chooses either ‘open’ boundary conditions (OBC), as
appropriate for molecules and clusters, or PBCs (Born–
von Kármán), as appropriate for condensed systems—either
crystalline or disordered.

Within OBC the KS orbitals vanish at infinity. For a
system of N electrons with N/2 doubly occupied orbitals
ϕ j(r) the dipoles (electrical and magnetical) of the fictitious
noninteracting KS system are then, in agreement with
equations (13)

d = dnuclear − 2e
N/2∑

j=1

〈ϕ j |r|ϕ j〉,

m = − e

2c

N/2∑

j=1

〈ϕ j |r× v|ϕ j〉,
(14)

where v = i[H, r], and H is the KS Hamiltonian. Atomic
Hartree units (e = h̄ = me = 1) are adopted in most of
the following (c � 137). The basic tenet of DFT is that the
microscopic density of the fictitious noninteracting KS system
coincides with the density of the interacting system: hence
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equations (14) provides the exact many-body d for molecules
and clusters. However, when considering a large system in
the thermodynamic limit, the density in the surface region
contributes extensively to the dipole. The magnetic case is
different: the microscopic current in the noninteracting KS
system needs not to be equal to the one in the interacting
physical one. The drawback is in principle cured by the
Vignale–Rasolt current DFT [42], although a simple, universal,
and reliable functional to be applied in actual computations has
still to appear [43–45].

The modern theory, as formulated below, provides
formulae for P and M which are exact within PBCs
for noninteracting electrons. However, within PBCs the
macroscopic polarization P is not a function of the microscopic
density, hence the value of P obtained from the KS orbitals, in
general, is not the correct many-body P. This was first shown
in 1995 by Gonze et al [46], and later discussed by several
authors. A complete account of the issue can be found in [10].
Needless to say, the situation for M is no better.

Therefore, neither P nor M can be exactly expressed—
even in principle—within standard DFT; but the exact DFT
functional is obviously inaccessible, and even sometimes
pathological. The practical issue is whether the current popular
flavours of DFT provide an accurate approximation to the
experimental values of P and M in a large class of materials.

In the electrical case a vast first-principle literature
accumulated over the years—by either linear-response theory
or the modern theory—typically shows errors of the order
of 10–20% on permittivity, and much less on most other
properties (infrared spectra, piezoelectricity, ferroelectricity)
for many different materials. It is unclear which part of the
error is to be attributed to DFT per se, and which part is to be
attributed to the approximations to DFT. The above mentioned
error refers to 3d systems (crystalline, amorphous, and liquid);
the state of the art is much worse for quasi-1d systems
(polymers), where the polarizabilities and hyperpolarizabilities
can be off by orders of magnitude [47]. For such case
studies the drawback is shown by computations within OBC,
where DFT is in principle exact: hence the culprit is in the
approximate functional.

In the magnetic case the experience is much more limited,
and accumulated only by linear-response theory in the work of
Mauri et al [48, 30, 49–51]. For the case studies addressed so
far the error seems fairly small.

Next, we switch to discussing an issue related to the use of
pseudopotentials, where a key difference between the electrical
and magnetic case exists. In the former case, the pseudo-
wavefunctions contain all of the information (to a very good
approximation), and the formalism can be applied as it stands;
in fact, it is implemented as such within the pseudopotential
codes [13, 14, 16–18]. Quite to the contrary, in the latter case
the orbital currents associated with the pseudo-wavefunctions
miss very important physical contributions. While all-electron
implementations have not yet appeared, the state-of-the art
calculations [28, 29] combine the pseudopotential approach
with a Blöchl-like PAW reconstruction for all elements beyond
the first row, much in the same way as first shown by Pickard
and Mauri in the framework of linear-response theory [49, 51].

5. Linear response

As stated in the very first paragraph of this work, we are
mostly addressing the modern theory of polarization P and
the modern theory of (orbital) magnetization M. Before the
development of the modern theories, derivatives of P and M
were accessible at the first-principle level via linear-response
theory. Some (though not all) experimental observables related
to P and M are by definition derivatives with respect to suitable
perturbations. Several observables in this class have been
computed over the years for many materials by means of
specialized codes (see below).

The spontaneous polarization of a ferroelectric material
and, analogously, the spontaneous orbital magnetization of a
ferromagnetic material cannot be accessed via linear-response
theory. Therefore such observables were ill-defined from
an electronic structure viewpoint until the advent of the
modern theories. Actually, the first computation ever of the
spontaneous polarization of a ferroelectric was published in
1993 [52]. As for orbital magnetization, all computations on
the market rely on the uncontrolled muffin-tin approximation;
the first implementation of the modern theory (where such
approximation is not needed) is appearing nowadays [29].

Even in the cases where the physical observable is by
definition a derivative, it often proves convenient to evaluate
such a derivative as a finite difference by means of the modern
theory. This does not require a specialized code, in that it only
needs a couple of ground-state calculations. The approach is
particularly appealing when studying complex materials and/or
using complex forms of exchange–correlation functionals. For
instance, infrared spectra of liquids are routinely accessed via
the modern theory of polarization [53–55].

5.1. Linear-response tensors

We indicate as F(E,H, λ) the free energy per unit volume,
where λ is the short-hand scalar notation for a macroscopic
perturbation which is actually tensorial as well (e.g. zone-
centre phonon, macroscopic strain, &C). We define λ such that
λ = 0 is the equilibrium unperturbed value. We exclude from
F the free energy of the free fields, which exists even in the
absence of the material. At any λ value the polarization and
the magnetization are the derivatives

P = −dF

∂E
, M = −dF

∂H
, (15)

evaluated at E = 0 and H = 0. In this work we tacitly refer to
the orbital term only in M.

The linear-response tensors are second derivatives of
F . In particular ∂P/∂E = −∂2 F/∂E∂E is the electrical
susceptibility and ∂M/∂H = −∂2 F/∂H∂H is the magnetic

susceptibility. The common symbol
↔
χ is customarily used for

both tensors. It must be emphasized that the electrical
↔
χ is

definite positive and of the order one, while the magnetic
↔
χ

can have either sign and is fairly small, of the order (1/137)2,
except near a ferromagnetic transition or in superconducting
materials. For this reason H can be safely replaced with B in
many circumstances.
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The evaluation of susceptibilities has been performed for
several years by means of specialized linear-response codes,
and is beyond the reach of the modern theories of polarization
and magnetization, at least in their original version. An
extension of the theory [31, 32], not discussed in this work,
removes such a limitation in the electrical case. The magnetic
case is universally dealt with by the long-wavelength linear-
response approach of Mauri et al [30].

The mixed derivative
↔
α= −∂2 F/∂E∂H = ∂M/∂E =

∂P/∂H, named the magnetoelectric polarizability, is much
in fashion nowadays given the current high interest in
multiferroics [56]. It has been discovered very recently (2009)
that the orbital magnetoelectric polarizability has some very
nontrivial topological features [57]; preprints on this topic are
appearing at the time of writing [58, 59].

The remaining linear-response tensors are the mixed
second derivatives ∂P/∂λ = −∂2 F/∂λ∂E and ∂M/∂λ =
−∂2 F/∂λ∂H, evaluated at equilibrium (λ = 0). Specialized
linear-response codes [16, 13] allow the computation of
some of these tensors from first principles; by exploiting the
symmetry of the mixed derivatives (Schwarz’s theorem) there
are usually two different paths, in principle equivalent but
computationally very different in their implementation.

The use of a specialized code can be avoided (as said
above) by evaluating the P and M derivatives as finite
differences by means of the modern theories of polarization
and magnetization.

5.2. Electrical case: pyroelectricity, piezoelectricity, and IR
charges

The pyroelectric coefficient is defined as

�α = dPα
dT

, (16)

the piezoelectric tensor as [60]

γαβδ = ∂Pα
∂εβδ

, (17)

and the dimensionless Born (or ‘dynamical’ or ‘infrared’)
charge as

Z∗s,αβ =
Vc

e

∂Pα
∂us,β

, (18)

that is as derivatives of P with respect to temperature T , strain
εβδ, and displacement us of sublattice s, respectively, where Vc

is the primitive cell volume. In the above formulae, derivatives
are to be taken at zero electric field and zero strain when these
variables are not explicitly involved.

By interpreting the second mixed derivatives of F the
other way around, we can define � via the specific heat
change linearly induced by a field at constant temperature, γ
via the macroscopic stress linearly induced by a field at zero
strain, and Z∗ via the forces linearly induced by a field at
the equilibrium geometry. This can be exploited in practice
in linear-response calculations.

To the best of author’s knowledge, pyroelectricity has
never been investigated at the first-principle level in any

material, although it is possibly within reach of finite-T Car–
Parrinello simulations [61]. The other three tensor properties
have been extensively studied in the literature, for many
classes of materials, via linear-response theory. The first DFT
computation ever of permittivity (for Si) appeared in 1986 [62]
and of piezoelectric tensors (for the III–Vs) in 1989 [63].
Nowadays, most state-of-the-art linear-response calculations
are based on the so-called ‘density functional perturbation
theory’, as described e.g. in the comprehensive [64, 65],
and implemented in the public-domain codes QUANTUM-

ESPRESSO [16] and ABINIT [13].
Linear-response methods, also called—in quantum-

chemistry jargon—‘analytical derivative’ methods, are not
the unique tool to compute some of the above derivative
properties: numerical differentiation in conjunction with the
modern theory can be used as well. Since piezoelectric
and infrared tensors are by definition zero-field properties,
first-principle studies have widely and successfully used the
modern theory within finite-difference schemes, particularly
for complex materials, complex basis sets, and nonstandard
functionals [66, 67].

Implementations of the modern theory have been
instrumental in the study e.g. of piezoelectric and infrared
properties of ferroelectric perovskites [21], as well as of the
infrared spectra of liquid and amorphous materials [54, 55].

5.3. A closer look at IR charges (Born effective charge
tensors)

The Born (or IR) effective charge tensor, equation (18), can
equivalently be defined (as already observed) as the force fs

linearly induced on a given nucleus s by a macroscopic E field
of unit magnitude. This force can obviously be expressed as
the microscopic Es field at site s, times the bare nuclear charge
eZs:

fs,α = eZ∗s,βαEβ = eZsEs,α. (19)

Notice that the Cartesian tensor
↔
Z∗s is in general nonsymmetric.

It follows that the local microscopic field at site s is related to
the macroscopic one as

∂Es,α

∂Eβ
= Z∗s,βα/Zs. (20)

In order to proceed further, we adopt in the following
of this section an all-electron view (no pseudopotentials):
therefore the perturbation induced by the displacement of
nucleus s and its periodic replicas by an infinitesimal amount
us is identical to introducing in the unperturbed crystal an
extra point dipole of magnitude ds = eZsus (and its periodic
replicas), where Zs is the bare nuclear charge. The original
definition of equation (18) can thus be recast as

Z∗s,αβ/Zs = Vc
∂Pα
∂ds,β

. (21)

The above manipulations are useful to show that the NMR
shielding tensor

↔
σ s, introduced next, is the perfect magnetic

analogue of
↔
Z∗s /Zs.
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5.4. Magnetic case: NMR shielding tensor

In nonmagnetic materials, the magnetic susceptibility is of
purely orbital nature. Since the pioneering work of Mauri
and Louie [30], this property has been successfully computed
in many materials via linear response in the long-wavelength
limit. Other properties, like the EPR g tensor for paramagnetic
defects in solids, are also computed by suitable linear-response
techniques which generalize the Mauri et al approach [68].

NMR spectroscopy [69] has been recognized since
1938 [70] to be a powerful experimental probe of local
chemical environments, including structural and functional
information on molecules, liquids, and increasingly, on solid-
state systems.

The NMR nuclear shielding tensor
↔
σ s by definition

linearly relates the local microscopic magnetic field at a given
nucleus Bs to the external macroscopic field B(ext) applied to
the finite sample:

σs,αβ = δαβ − ∂Bs,α

∂B(ext)
β

. (22)

It obviously depends on the sample shape (see section 2.2); it is
expedient to start with a sample in the form of a slab, with B(ext)

normal to the slab, as in the left sketch of figure 2. For other
shapes a correction is easily computed as a simple function

of
↔
χ . The chosen shape has the virtue that the macroscopic

screened field B inside the sample is equal to the external field
B(ext), hence

σs,αβ = δαβ − ∂Bs,α

∂Bβ
, (23)

whose electrical analogue is equation (20) with the obvious
identification

Z∗s,βα/Zs ←→ δαβ − σs,αβ . (24)

The linear-response approach of Mauri et al [48]—called
in the following the ‘direct’ approach–exploits equation (23)
by computing the microscopic orbital currents linearly induced
by a long-wavelength B field. Many improvements and
applications have appeared in the literature for more than a
decade since from the original paper [49, 51]. An alternative
approach, based on Wannier functions in a supercell, was also
proposed in 2001 by Sebastiani and Parrinello [71].

Very recently it has been demonstrated how to compute
NMR shielding tensor

↔
σ s via a ‘converse’ approach, by

exploiting Schwarz’s theorem and the modern theory of
magnetization [28]. The logic can be easily explained having
in mind the electrical analogue, section 5.3, and Schwarz’s
theorem. Equations (21) and (24) immediately yield

δαβ − σs,αβ = Vc
∂Mβ

∂mα

, (25)

where it is understood that the derivative is taken at zero B
field. In order to implement equation (25) in a first-principle
calculation one applies an infinite array of point-like magnetic
dipoles ms to all equivalent sites and calculates the change in
macroscopic orbital magnetization M by means of the modern

theory. The vector potential corresponding to such perturbation
is lattice periodical (since B is zero), and is easily inserted in
the crystalline kinetic energy.

The very first test cases studied by this converse approach
were some representative molecules in a supercell, crystalline
diamond, and liquid water [28]. The induced M proves to
be linear and stable over nine orders of magnitude, where ms

varies between 10−6 and 103 Bohr magnetons. The results
compare very favourably with previous results from the direct
approach for the same systems [48, 72, 73].

In the converse approach one needs to perform three
calculations for each site, but convergence of the perturbed
Hamiltonian (starting from the unperturbed one) is quite fast
and one can deal with a cell with hundreds of atoms. The
main advantage, however, is that the converse method avoids
a linear-response implementation (requiring substantial extra
coding) and, furthermore, is implementable with any complex
form of exchange–correlation functional, including DFT +U .

6. Modern theory of polarization

The modern theory of polarization is at a very mature stage.
Several review papers have appeared in the literature. The very
first one, [8], is still an highly cited classic (for crystalline
systems); the most recent ones are [9, 10]. Here we
summarize the basic concepts and the basic formulae, mostly
aiming at comparing them with the modern theory of orbital
magnetization, discussed below.

Most textbooks [33, 38] provide a flawed definition of P,
not implementable in practical computations [39]. A change of
paradigm emerged in the early 1990s [3, 4]; the modern theory,
based on a Berry phase, was founded by King-Smith and
Vanderbilt soon afterwards [5]. At its foundation, the modern
theory was limited to a crystalline system in an independent-
electron—either KS or Hartree–Fock—framework. Later,
the theory was extended to correlated and/or disordered
systems [6, 7]. Here we are going to present some of the main
formulae in reverse historical order.

The change of paradigm started with realizing that only
differences of P are experimentally observable as bulk material
properties. This is obvious for the derivative properties listed
above; but even the ‘spontaneous’ P is not accessible as an
equilibrium property.

The first calculation ever of spontaneous polarization was
published in 1990 [3]. The case study was BeO: it has
the simplest structure where inversion symmetry is absent
(i.e. wurtzite), and furthermore its constituents are first-row
atoms. The idea was to address the macroscopic polarization
of a slab of finite thickness, with faces normal to the c
axis, embedding it in an ad hoc medium which (1) has
no bulk polarization for symmetry reasons, and (2) does
not produce any geometrical or chemical perturbation at the
interface. The optimal choice is a fictitious BeO in the
zincblende structure. Because of obvious reasons, the system
is periodically replicated in a supercell geometry (figure 3, top
panel). The self-consistent calculation shows well localized
interface charges, of opposite sign and equal magnitudes at
the two nonequivalent interfaces (figure 3, bottom panel). The
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Figure 3. Top panel: the 14-atom BeO supercell in a vertical plane
through the BeO bonds; the wurtzite (W) and zincblende (ZB)
stackings are perspicuous. Bottom panel: macroscopic averages of
the valence electron density (solid) and of the electrostatic potential
(dotted).

interface charge is related, as in equation (3), to the difference
in polarization between the two materials: σinterface = �P · n.
The computer experiment provides the value of σinterface, and
since P vanishes by symmetry in the zincblende slab, one thus
obtains the bulk value of P in the wurtzite material.

It must be emphasized that the quantity really ‘measured’
in this computer experiment is�P, not the polarization P itself.
After [3] was published, a study of the experimental literature
showed that—contrary to an incorrect widespread belief—no
experimental value of P in any wurtzite material exists: only
estimates are available. Reference [3] marks, as said above,
a change of paradigm: polarization must be defined by means
of differences, and the concept of polarization ‘itself’ must be
abandoned. After the modern theory of polarization appeared,
the spontaneous polarization of BeO was computed as a Berry
phase as well [74]. Not surprisingly, the result agrees quite
well with [3], after taking into account that the former approach
provides the longitudinal polarization (in a depolarizing field),
and the latter the transverse polarization (in zero field): see the
discussion in section 2.2.

At variance with BeO (which is pyroelectric but not
ferroelectric), in ferroelectric materials the ‘spontaneous’
polarization has been measured, and tabulated in the literature,
for several decades. Ferroelectrics are insulating solids
characterized by a switchable macroscopic polarization P. In
such solids the value of P is generally nonzero at equilibrium,
and the application of a large enough electric field switches the
value of P among two (or more) different values. Ferroelectrics
therefore undergo spontaneous symmetry breaking, and
display a multistable equilibrium state. The most typical
ferroelectric crystals are in the class of perovskite oxides: these
have been much studied since the 1950s.

In most ferroelectrics the allowed values of P are equal
in modulus and point along equivalent (enantiomorphous)
symmetry directions. In a typical experiment the applied field

switches the polarization from P to −P, so that one speaks of
polarization reversal: the quantity which is directly accessible
to experiment is �P = 2|P|, not P. An experimental
determination of the spontaneous polarization is normally
extracted from a measurement of the transient current flowing
through the sample during an hysteresis cycle (figure 4).

The modern theory—in agreement with the experiment—
avoids addressing the ‘absolute’ polarization of a given
equilibrium state, quite in agreement with the experiments,
which invariably measure polarization differences. Instead,
it addresses differences in polarization between two states of
the material that can be connected by an adiabatic switching
process. The time-dependent Hamiltonian is assumed to
remain insulating at all times, and the polarization difference is
then equal to the time-integrated transient macroscopic current
that flows through the insulating sample during the switching
process:

�P = P(�t)− P(0) =
∫ �t

0
dt j(t). (26)

In the adiabatic limit �t →∞ and j(t)→ 0, while �P stays
finite. Addressing currents (instead of charges) explains the
occurrence of phases of the wavefunctions (instead of square
moduli) in the modern theory. Eventually the time integration
in equation (26) will be eliminated, leading to a two-point
formula involving only the initial and final states.

6.1. Single k-point formula for supercell calculations

For the sake of simplicity we deal with N electrons in a cubic
supercell of size L. We choose the boundary condition that the
microscopic field E(micro)(r) averages to zero over the supercell
(see the discussion in section 2.1), hence the KS potential is
supercell periodic. Notice that such choice corresponds to
a vanishing macroscopic field E only insofar as the sample
is homogeneous; otherwise (e.g. when simulating surfaces,
interfaces, and polar molecules) the macroscopic field is in
general nonzero in different supercell regions.

Suppose that ϕ j(r) are the occupied adiabatic eigenstates
of the KS instantaneous Hamiltonian at time t , normalized to
one in the supercell, and obeying PBCs therein; in other words
they are obtained from diagonalizing the Hamiltonian at the �
point at time t . We define the N/2 × N/2 connection matrix

Sα, j j ′ = 〈ϕ j |ei 2πrα
L |ϕ j ′ 〉, (27)

which is an implicit function of the adiabatic time; notice that
the operator in equation (27) is supercell periodic. The single-
point Berry phase is defined as [7, 75, 76]

γα = Im ln det Sα; (28)

this phase is gauge invariant, meaning that it is invariant
for unitary transformations of the occupied orbitals between
themselves.

Suppose that the nuclei are at sites Rm with charges
Zm ; when they are adiabatically displaced the transient
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Figure 4. Left: the perovskite oxide KNbO3 in the tetragonal structure. Solid, shaded, and empty circles represent K, Nb, and O atoms,
respectively. The internal displacements (magnified by a factor 4) are indicated by arrows for two (A and B) enantiomorphous ferroelectric
structures. An applied field switches between the two and reverses the polarization. Right: the polarization difference is typically measured
via an hysteresis loop. The magnitude of the spontaneous polarization is also shown (vertical dashed segment); notice that spontaneous
polarization is a zero-field property.

macroscopic electrical current (nuclear plus electronic)
entering equation (26) is, in Hartree units,

j(t) = 1

L3

∑

m

Zm
dRm

dt
+ j(el)(t). (29)

Notice that the overall charge neutrality of the system (N =∑
m Zm) is essential for dealing with dipolar properties. It

can be shown, by means of linear-response theory, that the α-
component of the electronic transient current is

j (el)
α (t) = − 1

πL2

dγα(t)

dt
, (30)

where γα is the instantaneous Berry phase of equation (28).
This equation is correct to leading order in 1/L and for double
occupancy [7, 75, 76]. Replacing it into equations (26) and (29)
we get, in the large-L limit

�Pα = 1

L3

∑

m

Zm�Rm,α − 1

πL2
[γα(�t)− γα(0)]. (31)

This is the two-point formula universally used, e.g. in Car–
Parrinello [61] simulations, whenever polarization features are
addressed [54, 55]; the generalization to noncubic supercells
is trivial. Equation (31) is also routinely used to evaluate
the dipole of an isolated molecule, whenever a supercell
framework is desirable.

It is worth noticing that the nuclear and electronic terms
contributing to�P in equation (31) are not separately invariant
for translation of the origin in the supercell. The key point
is that their sum is indeed invariant, modulo the ‘quantum’
discussed below, section 6.4.

6.2. Many k-point formula for crystalline calculations

Let us assume, for the sake of simplicity, a simple cubic lattice
of lattice constant a. Then the Born–von-Kàrmàn period L is
an integer multiple of the lattice constant: L = Ma, where
M → ∞ in the large-system limit. The most general crystal
structure can be considered by means of a simple coordinate
transformation [8]. The KS potential is lattice periodical,

meaning that the macroscopic field E (i.e. the cell average of
the microscopic one) vanishes.

The allowed Bloch vectors are discrete

ks1,s2,s3 =
2π

Ma
(s1, s2, s3), sα = 0, 1, . . . ,M − 1, (32)

and the corresponding Bloch orbitals are ψnks1 ,s2,s3
(r) =

eiks1 ,s2,s3 ·runks1 ,s2,s3
(r). The overlap matrix of equation (27) then

becomes

Sα, j j ′ → 1

M3

∫ L

0
dx

∫ L

0
dy

∫ L

0
dz ψ∗nk(r)e

i 2πrα
Ma ψn′k′(r)

=
∫ a

0
dx

∫ a

0
dy

∫ a

0
dz u∗nk(r)e

i(k′−k+ 2πrα
Ma )un′k′(r), (33)

where k and k′ must be chosen within the discrete set. The
1/M3 factor owes to the fact that the ϕ j(r) orbitals entering
equation (27) are normalized in the cube of volume L3, while
the Bloch orbitals ψn and un are normalized in the crystal cell
of volume a3. For given k and k′ the size of the matrix on
the rhs of equation (33) is nb (the number of double-occupied
bands), while the k and k′ arguments run over M3 discrete
values. In fact, the total number of electrons in the Born–von-
Kàrmàn box is N = 2nb M3.

The key difference between the noncrystalline case and
the crystalline one is that the connection matrix, equation (33),
becomes very sparse in the latter case. Focusing, without
loss of generality, on the x-component (α = 1), and writing
explicitly k = ks1,s2,s3 and k′ = ks ′1,s ′2,s ′3 , its only nonzero
elements are those with s1 = s′1+1, s2 = s′2, and s3 = s′3. With
the usual definition of the scalar product between un orbitals

〈unk|un′k′ 〉 =
∫

cell
dr u∗nk(r)un′k′(r), (34)

these nonzero elements can be rewritten as

Snn′(ks1+1,s2,s3 ,ks1,s2,s3) = 〈unks1+1,s2 ,s3
|un′ks1 ,s2,s3

〉. (35)

Owing to such sparseness, the determinant of the large matrix
Sx (of size N/2 = nb M3) in equation (27) factorizes into
the product of M3 determinants of the small matrices S(k,k′)

10



J. Phys.: Condens. Matter 22 (2010) 123201 Topical Review

(of size nb each). The Berry phase defined in equation (28)
then becomes

γx = Im ln
M−1∏

s1,s2,s3=0

det S(ks1+1,s2,s3 ,ks1,s2,s3)

= −
M−1∑

s2,s3=0

Im ln
M−1∏

s1=0

det S(ks1,s2,s3,ks1+1,s2,s3). (36)

If we use the symbol τ � for the nuclear positions in the unit
cell, the main polarization formula, equation (31), becomes

�Px = 1

a3

∑

�

Z��τ�,x − 1

πM2a2
[γx(�t)− γx(0)], (37)

and analogously for the other Cartesian components. This
is the key formula implemented in most electronic structure
codes for crystalline calculations [13, 15, 18, 16].

We notice that the unk orbitals entering S, equation (33),
can be chosen with arbitrary phase factors (choice of the
‘gauge’), but these factors cancel out in equation (36), leaving
no arbitrariness. Furthermore, equation (36) is invariant by
unitary transformations of the occupied orbitals at a given k.
Therefore the discrete Berry phase in equation (36) is a global
property of the occupied manifold as a whole; this is useful
when the band numbering is nonunique (e.g. in the case of band
crossings).

6.3. King-Smith and Vanderbilt formula

In order to make contact with the original continuum
formulation by King-Smith and Vanderbilt it is expedient to
define γ (crys)

α = γα/M2, and rewrite equation (37) as

�Px = 1

a3

∑

�

Z��τ�,x− 1

πa2
[γ (crys)

x (�t)−γ (crys)
x (0)]. (38)

In the M → ∞ limit the k-point mesh becomes dense.
If the gauge is chosen in such a way that the overlap matrix
Snn′(k,k′) = 〈unk|un′k′ 〉 is a differentiable function of its
arguments, the electronic term in equation (38) converges to
a reciprocal-cell integral. In fact it can be shown that, in the
M →∞ limit [5, 8, 76]

γ (crys)
x = − lim

1

M2

M−1∑

s2,s3=0

Im ln
M−1∏

s1=0

det S(ks1,s2,s3 ,ks1+1,s2,s3)

(39)

→ ia2

(2π)2

∫

dk
∂

∂k ′x

nb∑

n=1

Snn(k,k′)
∣
∣
∣
∣
k′=k

= ia2

(2π)2

∫

dk
nb∑

n=1

〈

unk

∣
∣
∣
∣
∂

∂kx
unk

〉

. (40)

Historically, equations (39) and (40) were derived first by
King-Smith and Vanderbilt [5], and the single-point formula,
equation (31), much later [7].

For the sake of completeness, we give also the
formula for the most general crystalline lattice, with double

band occupation. The electronic contribution to electronic
polarization is the Brillouin-zone (BZ) integral

P(el) = − 2i

(2π)3

∫

BZ
dk

nb∑

n=1

〈unk|∇kunk〉, (41)

where it is understood that the expression must be used to
evaluate polarization differences in a two-point formula, and
the sum is over the occupied bands. The formula given here is
in atomic Hartree units, for double occupancy, and for orbitals
normalized to one over the crystal cell. The integral is over the
BZ or, equivalently, over a reciprocal cell.

We recall that polarization (as a bulk material property)
only makes sense in insulators, and that, in this work, we refer
more precisely to ‘KS insulators’. In fact, the integration is
equations (40) and (41) is over the whole reciprocal cell or,
equivalently, over the whole BZ. The spectrum has a gap and
the number nb of occupied orbitals is independent of k. Also, it
is worth noticing that the integrand in equations (40) and (41) is
not gauge invariant, in that it depends on the (arbitrary) choice
of the phases of |unk〉 at different ks; nonetheless the integral
is gauge invariant (modulo the ‘quantum’ discussed below).
More generally, the integral is invariant for any differentiable
unitary mixing of the occupied |unk〉 between themselves at
a given k. A similar observation was made above about the
discrete equation (36).

6.4. The polarization ‘quantum’

Given that every phase is defined modulo 2π , all of the two-
point formulae for �P in terms of Berry phases are arbitrary
modulo a polarization ‘quantum’. This is the tradeoff one has
to pay when switching from the adiabatic connection formula,
equation (26)—where no such arbitrariness exists—to any of
the two-point formulae given above.

In the single k-point case, equation (31), the ‘quantum’ is
2/L2: since we are interested in the large supercell limit, where
the ‘quantum’ vanishes, the two-point formula is apparently
useless. This is not the case, and in fact equation (31)
is routinely used for evaluating polarization differences in
noncrystalline materials. The key point is that the L →
∞ limit is not actually needed; for an accurate description
of a given material, it is enough to assume a finite L,
actually larger than the relevant correlation lengths in the
material. For any given length, the polarization ‘quantum’
2/L2 sets an upper limit to the magnitude of a polarization
difference accessible via the two-point formula, equation (31).
The larger are the correlation lengths, the smaller is the
accessible �P. This is no problem at all in practice, either
when evaluating static derivatives by numerical differentiation,
such as e.g. in [53, 77], or when performing Car–Parrinello
simulations [54, 55]. In the latter case �t is a Car–Parrinello
time step (a few au), during which the polarization varies
by a tiny amount, much smaller than the quantum 2/L2 (the
typical size of a large simulation cell nowadays is L � 50 au).
Whenever needed, the drawback may be overcome by splitting
�t in equation (26) into several smaller time intervals, and by
using the two-point formula for each of them.
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It is worth emphasizing that—owing to supercell
periodicity—even the classical nuclear term in equation (31)
is affected by a similar indeterminacy, whenever a nuclear
displacement �Rm becomes of order L.

In the crystalline case translational invariance produces
the much larger ‘quantum’ 2/a2. In fact, it is easily shown
that equation (40) is gauge-invariant modulo 2π . The classical
nuclear term has a similar indeterminacy.

Caution is in order in numerical work, when using
equation (39) at finite M , since in general the |unk〉 obtained
from numerical diagonalization at the mesh points are not
differentiable functions of k. If each of the M2 terms in
the sum is chosen with arbitrary modulo 2π freedom, then
γ
(crys)
α is unavoidably arbitrary modulo 2π/M2. A more

clever choice is possible (and actually performed in practical
implementations) as follows. One starts choosing arbitrarily
one of the possible (modulo 2π ) values for the first term in
the sum (s2 = 0 and s3 = 0); for the remaining terms,
it is possible to impose that nearest-neighbour phases differ
by much less than 2π (if the mesh is dense enough). This
choice is unique, and eliminates any residual arbitrariness,
corresponding to the discrete average of a continuous function
of kykz , as indeed in equation (40). By this token the discrete
Berry phase formula, equation (39), leads to the polarization
‘quantum’ 2/a2 (independent of M and L), indeed identical to
the continuous one, and large enough to be harmless for most
computations.

6.5. Wannier functions

The KS ground state is a Slater determinant of doubly occupied
orbitals; any unitary transformation of the occupied states
among themselves leaves the determinantal wavefunction
invariant (apart for an irrelevant phase factor), and hence it
leaves invariant any KS ground-state property.

For an insulating crystal, the KS orbitals are the Bloch
states of completely occupied bands; these can be transformed
to localized Wannier orbitals (or functions) WFs. This has been
known since 1937 [78], but for many years the WFs have been
mostly used as a formal tool; they became a popular topic
in computational electronic structure only after the seminal
work of Marzari and Vanderbilt [79]. A comprehensive review
appeared as [80], and a public-domain implementation is in
WANNIER90 [81]. If the crystal is metallic, the WFs can still
be technically useful [51], but it must be emphasized that
the ground state cannot be written as a Slater determinant of
localized orbitals of any kind, as a matter of principle [82].

The transformation of the Berry phase formula equa-
tion (41) in terms of WFs provides an alternative, and perhaps
more intuitive, viewpoint. The formal transformation has been
known since the 1950s [83], although the physical meaning
of the formalism was not understood until the advent of the
modern theory of polarization.

The unitary transformation which defines the WF wnR(r),
labelled by band n and unit cell R, within our normalization is

|wnR〉 = Vc

(2π)3

∫

BZ
dk eik·R |ψnk〉. (42)

If one then defines the ‘Wannier centres’ as rnR =
〈wnR|r|wnR〉, it is rather straightforward to prove that
equation (41) is equivalent to

P(el) = − 2

Vc

nb∑

n=1

rn0. (43)

This means that the electronic term in the macroscopic
polarization P is (twice) the dipole of the Wannier charge
distributions in the central cell, divided by the cell volume. The
nuclear term is obviously similar in form to equation (43).

WFs are severely gauge dependent, since the phases of
the |ψnk〉 appearing in equation (42) can be chosen arbitrarily.
However, their centres are gauge-invariant modulo R (a lattice
vector). Therefore P(el) in equation (43) is affected by the same
‘quantum’ indeterminacy discussed above. We also stress,
once more, that equation (43)—as well as equation (41)—
is to be used in polarization differences, and does not define
polarization itself.

The modern theory, when formulated in terms of WFs,
becomes much more intuitive, and in a sense vindicates
the venerable Clausius–Mossotti viewpoint [36]: in fact, the
charge distribution is partitioned into localized contributions,
each providing an electric dipole, and these dipoles yield the
electronic term in P. However, it is clear from equation (42)
that the phase of the Bloch orbitals is essential to arrive at the
right partitioning. Any decomposition based on charge only is
severely nonunique and does not, in general, provide the right
P, with the notable exception of the extreme case of molecular
crystals.

In the latter case, in fact, we may consider the set of WFs
centred on a given molecule; their total charge distribution
coincides—in the weakly interacting limit—with the electron
density of the isolated molecule (possibly in a local field).
This justifies the elementary Clausius–Mossotti viewpoint. It
is worth mentioning that the dipole of a polar molecule is
routinely computed in a supercell geometry via the single-point
Berry phase [77]. The dipole value coincides with the one
computed in a trivial way in the large supercell limit. Finite-
size corrections, due to the local field (different in the two
cases), can also be applied [84].

The case of alkali halides—where the model is often
phenomenologically used—deserves a different comment [10].
The electron densities of isolated ions (with or without
fields) are quite different from the corresponding WFs charge
distributions, for instance because of orthogonality constraints:
hence the model is not justified in its elementary form, despite
contrary statements in the literature. For a detailed analysis,
see [37].

7. Geometrical issues

7.1. Chern invariants and topological insulators

It has been observed that macroscopic polarization (as a
bulk material property) only makes sense in insulating
materials, while macroscopic orbital magnetization exists both
in insulators and metals. Furthermore, magnetic insulators
come in two classes: the ‘nonexotic’ and the ‘exotic’ ones,
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called in the following ‘normal insulators’ and ‘topological
insulators’, respectively.

Until recently the only known realization of a topological
insulator was the quantum Hall effect (QHE): a 2d electron
fluid in a perpendicular B field exhibits a new state of matter.
The ‘bulk’ of the system is insulating, but there are circulating
edge states which are robust (‘topologically protected’) in
presence of disorder, and are responsible for the famous
plateaus in the transverse conductivity. The same electron fluid
can be described using toroidal boundary conditions, where no
edge exists. In this case the signature of the quantum Hall
state is a topological integer C1 (Chern number of the first
class) which geometrically characterizes the wavefunction.
The Chern number is defined below, equation (45), only in the
simple case of B = 0; C1 = 0 means a normal insulator. The
Hall conductivity in the QHE regime is simply expressed in
atomic Hartree units as

σT = −C1/2π, (44)

or, in ordinary units, σT = −C1e2/h.
This result is due to Thouless and co-workers, both in

the case of integer [85] and fractional [86] QHE. These two
milestone papers mark the debut of geometrical concepts in
electronic structure theory [87]. Notice that in the QHE regime,
due to the presence of a macroscopic B field, the Hamiltonian
cannot be lattice periodical.

A subsequent breakthrough on the theory side is the
Haldane model Hamiltonian [88]: this can be considered
as the archetype of topological insulators (see below). The
model is comprised of a 2d honeycomb lattice with two tight-
binding sites per primitive cell with site energies±�, real first-
neighbour hopping t1, and complex second-neighbour hopping
t2e±iϕ , as shown in figure 5. Within this two band model, one
deals with insulators by taking the lowest band as occupied.
The appeal of the model is that there is no macroscopic field,
hence the vector potential and the Hamiltonian are lattice
periodical and the single-particle orbitals always have the usual
Bloch form. Essentially, the microscopic magnetic field can
be thought as staggered (i.e. up and down in different regions
of the cell), but its cell average vanishes. As a function
of the flux parameter φ, this system undergoes a transition
from zero Chern number (i.e. normal insulator) to |C1| = 1
(i.e. topological insulator).

In general, the Chern number for any lattice periodical
Hamiltonian in 2d is expressed in terms of the Bloch orbitals
as

C1 = i

2π

nb∑

n=1

∫

BZ
dk [〈∂unk/∂k1 | ∂unk/∂k2〉

− 〈∂unk/∂k2 | ∂unk/∂k1〉], (45)

where the sum is over the occupied ns only, and the integral is
over the 2d Brillouin zone (the formula here is given for single
band occupancy). It is easily verified that C1 is dimensionless,
and in fact is quantized in integer units.

In 3d the Chern number, equation (45), is generalized to
the (vector) Chern invariant

C = i

2π

nb∑

n=1

∫

BZ
dk 〈∂kunk| × |∂kunk〉, (46)

Figure 5. Four unit cells of the Haldane model [88]. Filled (open)
circles denote sites with E0 = −� (+�). Solid lines connecting
nearest neighbours indicate a real hopping amplitude t1; dashed
arrows pointing to a second-neighbour site indicate a complex
hopping amplitude t2eiφ. Arrows indicate the sign of the phase φ for
second-neighbour hopping.

with the usual meaning of the cross product between three-
component bra and ket states. Here the integral is over the
3d Brillouin zone, and ∂k = ∂/∂k. The Chern invariant has
the dimension of an inverse length, and in fact is quantized in
units of reciprocal lattice vectors. Notice the analogy with—
but also the key difference from—the Berry phase formula in
the modern theory of polarization, equation (41).

Whenever the Chern invariant (number in 2d) is nonzero
in a periodic Hamiltonian the bulk states are gapped, but
there are topologically protected surface (edge in 2d) states
which are conducting: we call ‘Chern insulator’ this kind of
topological insulator. It is worth noticing that in a Chern
insulator Wannier functions cannot exist [89] (despite the fact
that the Hamiltonian eigenstates do have the Bloch form).

No microscopic realization of an insulator with nonzero
Chern number (in 2d) or nonzero Chern invariant (in 3d),
in absence of a macroscopic B field is known to date. A
mesoscopic 2d Chern insulator, in the same spirit as the
Haldane model Hamiltonian, was synthesized in 2008, and the
quantization therein was demonstrated [90].

Since all known real materials were either conductors or
normal insulators, the exotic insulators remained a curiosity
of only academic interest for many years. The interest in
topological insulators boomed after a 2005 paper by Kane
and Mele, who proposed a novel invariant (called Z2) to
discriminate between normal and exotic insulators. Nontrivial
values of this invariant occur in time-reversal symmetric
systems; the fingerprint of a Z2 topological insulator in 2d
is the quantum spin Hall effect. Analogously to the ordinary
quantum Hall effect, a finite sample displays topologically
protected circulating edge states, but opposite spins are
counterpropagating, and the total edge current vanishes. This
exciting new field is clearly beyond the scope of the present
review, given also that it concerns time-reversal symmetric
systems. We only stress that a genuine revolution is
underway in the field of topological insulators, and that the
experimental realization of a topological insulator in 2d and
3d has been demonstrated. We provide a few references for
orientation: [91–95].
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7.2. Berry curvature and the anomalous Hall effect

The integrand in equations (45) and (46) is a key geometrical
feature of the wavefunction within PBCs, and goes under the
name of ‘Berry curvature’ (in both 2d and 3d), or, equivalently,
of ‘gauge field’. We define it per band, i.e.

Ωn(k) = i〈∂kunk| × |∂kunk〉 = − Im〈∂kunk| × |∂kunk〉; (47)

equivalently one can define the Berry curvature as the
antisymmetric Cartesian tensor

�n,αβ(k) = −2 Im〈∂unk/∂kα | ∂unk/∂kβ〉. (48)

The Berry curvature is gauge invariant, hence in principle it
leads to observable effects.

In the presence of time-reversal symmetry the Chern
invariant vanishes, i.e. the Berry curvature integrates to
zero over the BZ. However, it is identically zero only
in centrosymmetric crystals. Instead, in crystals which
are time-reversal symmetric but non-centrosymmetric, Ωn(k)
contributes to the semiclassical equation of transport [96].

When time-reversal symmetry is broken and the system is
metallic the integral of Ωn(k) over the occupied states provides
a sizeable contribution to the anomalous Hall effect (AHE),
discussed in the following.

In the absence of time-reversal symmetry (e.g. in a
metallic ferromagnet) the transverse conductance is nonzero
even in zero magnetic field. This is the AHE, discovered by
E R Hall in 1881 (at about the same time as the normal Hall
effect); it gathered a renewal of interest in the 2000s. The effect
is due to several mechanisms, some of them extrinsic, and the
relative role of the different mechanisms is still controversial;
however, one important term in the AHE conductivity is
intrinsic and purely geometrical. Using equation (48) this term
is (in atomic Hartree units and for single band occupancy)

σαβ = − 1

(2π)3
∑

n

∫

BZ
dk fnk�n,αβ(k), (49)

where fnk = θ(μ − εnk) is the Fermi occupancy factor at
T = 0, and μ is the Fermi energy. A formula similar,
though not identical, to equation (49), was proposed as
early as 1954 by Karplus and Luttinger [97]. The genuine
Berry connection formula, equation (49), was established in
2002 [98], and implemented in first-principle calculations soon
afterwards [99–101] for the three ferromagnetic metals Fe, Co,
and Ni. It has been found that the integrand fluctuates wildly,
and therefore the BZ integration is quite demanding.

It is worth pointing out that the 2d analogue of
equation (49), when applied to a gapped crystal, coincides
exactly with the QHE formula, equation (44). In both the
QHE and AHE cases these topological formulae, derived
within PBCs for a sample without boundaries, correspond to
dissipationless boundary currents in finite samples.

8. Modern theory of magnetization

First of all we recall that both spin and orbital motion of
the electrons contribute to the total magnetization. While

spin magnetization can be calculated with high accuracy by
standard state-of-the-art methods such as the spin-density
functional theory (SDFT), orbital magnetization is the subject
of investigations still in progress at the fundamental level.
In this work, we refer to M as the macroscopic orbital
magnetization in zero B field. This requires breaking of time-
reversal symmetry in the spatial wavefunction, which can occur
in several ways. An important paradigm is the 2d model
Hamiltonian introduced by Haldane in 1988 [88] (figure 5);
in real materials the time-reversal symmetry breaking can be
due to spin–orbit interactions (as in ferromagnets), or to an
explicit perturbation in nonmagnetic materials (as e.g. detailed
in section 5.4).

8.1. Normal insulators

In a normal insulator (i.e. whenever the Chern invariant is zero)
the Bloch orbitals can be chosen so as to obey |ψnk+G〉 =
|ψnk〉 (the so-called periodic gauge), which in turn warrants
the existence of WFs enjoying the usual properties. Under
this condition, the formula yielding the macroscopic orbital
magnetization in vanishing macroscopic B field is

M = 1

c(2π)3
Im

nb∑

n=1

∫

BZ
dk 〈∂kunk| × (Hk + εnk) |∂kunk〉.

(50)
The formula as given here is in atomic Hartree units (c � 137)
and for double band occupancy. As usual, |unk〉 is the periodic
part in a Bloch orbital, εnk is the band energy, and Hk is the
effective Hamiltonian acting on the u’s, i.e. Hk = e−ik·r H eik·r.
The orbitals are normalized to one over the crystal cell of
volume Vc; the sum is over the occupied bands and the integral
is over the whole BZ.

Equation (50) was first established for the single band
case, independently in [11] (via the semiclassical method)
and in [12] (addressing the ground state in term of WFs).
In the latter case, computer simulations based on the 2d
Haldane model Hamiltonian (figure 5) have been instrumental
in order to arrive at the magnetization formula and to validate
it. A precursor work, appeared in 2003 [102], provides the
correct formula for the special case of the Hofstadter model
Hamiltonian. The (nontrivial) extension to the many band case,
as given in equations (50), was provided in 2006 by Ceresoli
et al [23] (again, via WFs).

It is expedient to compare equation (50) with its electrical
analogue, which is the King-Smith and Vanderbilt polarization
formula, written in equation (41) (for double band occupancy
and in atomic units as well). The main ingredient in both
formulae are k-derivatives of the periodic |unk〉 orbitals;
additionally, the Hamiltonian and the band energies appear in
M. A key difference is that in equation (41) the integrand
is gauge dependent, and only the integral is gauge invariant;
in the magnetic case, instead, both the integrand and the
integral are gauge invariant. In the electrical case only the
BZ integral—as in equation (41)—makes sense, and this is
in agreement with the fact that bulk polarization P is well
defined only in insulators (within our KS scheme, in ‘KS
insulators’, to be more precise). In the magnetic case, instead,
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the same integral appearing in equation (50), but limited to
states below the Fermi level in metals, is gauge invariant and
could make physical sense, since M is well defined even in
metals. The actual formula for metals (see below, section 8.3)
is similar, but somewhat different. A further key difference,
worth emphasizing, is that there is no ‘quantum’ indeterminacy
in the magnetic case.

An apparent paradox is that equation (50) does not appear
at first sight to be invariant with respect to translation of the
energy zero. However, the zero-Chern-invariant condition—
compare equations (50)–(46)—enforces such invariance in any
normal insulator.

The main magnetization formula, equation (50), for the
orbital magnetization of a crystalline insulator can easily
be implemented in existing first-principle electronic structure
codes, making available the computation of the orbital
magnetization in crystals and at surfaces. The k-derivatives
therein must be discretized as finite differences; a gauge-
invariant numerical algorithm to this aim is detailed in
appendix A of [23].

8.2. Single k-point formula for supercell calculations

We start by observing that equation (50) is invariant by cell
doubling. In fact, starting with a cell (or supercell) of given
size, we may regard the same physical system as having double
periodicity (in all directions), in which case the integration
domain in equation (50) gets ‘folded’ and shrinks by a factor
1/8, while the number of occupied eigenstates gets multiplied
by a factor of 8. It is easy to realize that these are in fact the
same eigenstates as in the unfolded case, apart possibly for a
unitary transformation, irrelevant here. As for the discretized
form of equation (50), it can be chosen to be numerically
invariant by cell doubling within the computational tolerance
chosen (by a suitable choice of the mesh).

The supercell is the obvious way of dealing with
disordered systems, which can be regarded as a crystalline
systems of large enough size. The actually required size
depends on the relevant correlation lengths in the material
addressed.

If we replace Vc in equation (50) with a (large) supercell
volume V , the integral is approximated by the value of the
integrand at k = 0 times the reciprocal volume (2π)3/V . If
there are N electrons in the supercell the formula is

M = 1

cV
Im

N/2∑

n=1

〈∂kun0| × (H0 + εn0) |∂kun0〉. (51)

This formula has been proposed in [27] and validated,
once more, via simulations based on the 2d Haldane model
Hamiltonian. One key virtue of equation (51) is its gauge
invariance in a generalized sense, that is for arbitrary unitary
mixing of the occupied |unk〉 among themselves.

The k = 0 derivatives |∂kun0〉 appearing in equation (51)
deserve further discussion, since here we no longer have any
mesh, only one reciprocal point (the � point). One possible
approach is to evaluate such derivatives via perturbation theory,
i.e.

|∂kun0〉 =
∑

m �=n

|um0〉 〈um0|v|un0〉
εm0 − εn0

, (52)

where v is the velocity operator

v = i[H, r] = ∇k Hk|k=0. (53)

Equation (52) is convenient for tight-binding implementations,
where the sum is over a small number of terms. We also notice
that the matrix representation of r, for use in equation (53), is
usually taken to be diagonal on the tight-binding basis.

However, equation (52) is not convenient for a first-
principle implementation, since it would require the evaluation
of slowly convergent perturbation sums. This can be avoided
taking a different approach. If b j are the shortest reciprocal
vectors of the supercell, and ∂ j indicates the partial k-
derivative in the direction of b j , then by definition

|∂ j un0〉 = lim
λ→0

1

λ|b j |(|un λb j 〉 − |un0〉). (54)

For a large enough supercell, the limit is approximated by
taking λ = 1. Next we wish to evaluate |unb j 〉 without actually
diagonalizing the Hamiltonian at k �= 0. To this aim, we notice
that the state e−ib j ·r|un0〉 obeys periodic boundary conditions
and is an eigenstate of Hnb j corresponding, possibly, to
a different occupied eigenvalue and to a different phase
choice. In other words, no further diagonalization is needed
to identify the manifold spanned by the occupied eigenstates
|unb j 〉 appearing in equation (54). It is then easy to evaluate
equation (51), provided a specific gauge is enforced. In
fact, equation (51) is gauge invariant by unitary mixing
of the occupied eigenstates. We further observe that the
eigenstates |unk〉 obtained from numerical diagonalization are
not analytical functions of k—as instead is implicitly assumed
in equation (54). But this feature causes no harm after the
gauge transformation is performed. The algorithm performing
the required gauge transformation is detailed in [27], and is
inspired by [103, 104].

The single-point formula, equation (51), has been
implemented in a first-principle framework to evaluate the
NMR shielding tensor in liquid water, via the converse
approach discussed in section 5.4 [28].

The formula is ideally suited for implementation in time-
dependent Car–Parrinello simulations, as in the corresponding
electrical case (section 6.1), but an important caveat is in order:
whenever time-reversal symmetry is absent, the classical
nuclear equation of motion needs to be modified.

The nuclear kinetic energy includes, in general, two
vector potentials: the obvious one of magnetic origin, and an
additional one of geometric origin (or ‘gauge potential’). The
latter, in the absence of time-reversal symmetry, is not curl-
free in the region visited by the classical system. Therefore
the two vector potentials give rise to two different—and often
competing—forces of the Lorentz kind in the Newton equation
of motion: one is the familiar Lorentz force of classical
electromagnetism [2], and the other has a quantum origin.
For more details, see section 5.2 in [76], and for a toy-model
implementation see [105].
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8.3. Chern insulators and metals

We switch here to single band occupancy, having in mind e.g.
a ferromagnet (where the orbitals for up and down spins are
different). The macroscopic magnetization per spin channel is

M = 1

2c(2π)3
Im

∑

n

∫

BZ
dk fnk〈∂kunk|

× (Hk + εnk − 2μ) |∂kunk〉, (55)

where fnk is, as above, the Fermi occupancy factor at T = 0
and μ is the Fermi energy. The formula applies to both
Chern insulators (defined as insulators with nonzero Chern
invariant) and metals. Equation (55) is obviously invariant by
translation of the energy zero and coincides with (one half of)
equation (50) in the case of a normal insulator. In fact, the role
ofμ is irrelevant if the Chern invariant, equation (46), vanishes.
In both Chern insulators and metals the magnetization depends
on μ, as it must be (see section 8.4).

Equation (55) was first derived from semiclassical
arguments for the single band case in [11]. Subsequently,
equation (55) was heuristically assumed in [23] and validated
via computer experiments. Needless to say, the transformation
to WFs leading to the proof of equation (50) could not be used
for Chern insulators and for metals.

The numerical validation of equation (55) was based once
more on the 2d Haldane model Hamiltonian (figure 5) at
various fillings, and required two sets of simulations based on
(i) OBCs, corresponding to a finite sample with a boundary,
and (ii) PBCs. In case (i) the magnetization M was computed
in the trivial way by means of equations (14), while in case
(ii) M was computed by means of equation (55), discretized on
a numerical grid and exploiting a smearing technique (Fermi–
Dirac occupancy at finite T ). The two sets of computations
indeed converged to the same M value in the large-system
limit [23].

More recently, a quantum derivation of equation (55)
beyond the semiclassical regime, and based on perturbation
theory, was published by Shi et al [25]. Only one first-principle
implementation exists at the time of writing [29]: this concerns
the orbital contribution to the spontaneous magnetization of Fe,
Co, and Ni.

In order to proceed further, it is expedient to write
equation (55) identically as the sum of two terms, each of
them separately gauge invariant, hence in principle separately
measurable

M = M1 +M2

M1 =
∑

n

∫

BZ
dk fnk mn(k),

mn(k) = 1

2c(2π)3
Im〈∂kunk| × (Hk − εnk) |∂kunk〉; (56)

M2 = 1

c(2π)3
∑

n

∫

BZ
dk fnk (μ− εnk)Ωn(k). (57)

Here Ωn(k) is the Berry curvature, equation (47), and mn(k)
coincides with the semiclassical formula for the magnetization
of a wavepacket in the nth band [96].

8.4. Finite temperature formula

It has already been stated that—at variance with the electrical
analogue P—orbital magnetization M is a well defined
physical property even at nonzero temperature. The Fermi
occupancy factor as a function of μ (chemical potential) and
β (inverse temperature) becomes

fnk = 1

eβ(εnk−μ) + 1
. (58)

According to Shi et al [25] the finite temperature orbital
magnetization can be written as M = M1 + M2, where M1

is identical in form to equation (56), whereas M2 instead
becomes

M2 = 1

c(2π)3
∑

n

∫

BZ
dk

1

β
ln[1+ e−β(εnk−μ)]Ωn(k), (59)

whose T → 0 limit coincides with equation (57). The
formulae given here hold for any crystalline system: normal
insulators, Chern insulators, and metals.

Next we take the μ derivatives of the two terms in the
magnetization formula:

∂M1

∂μ
=

∑

n

∫

BZ
dk
∂ fnk

∂μ
mn(k) (60)

∂M2

∂μ
= 1

c(2π)3
∑

n

∫

BZ
dk fnk Ωn(k). (61)

We notice that at low temperature ∂ fnk/∂μ is essentially a δ at
the Fermi surface, and we analyse the three cases in the T → 0
limit.

(i) For a normal insulator μ falls in an energy gap and
the Berry connection integrates to zero over the BZ. Ergo the
magnetization M is μ-independent.

(ii) For a Chern insulator μ falls in a bulk gap,
ergo ∂M1/∂μ vanishes, while ∂M2/∂μ is quantized and
proportional to the Chern invariant, equation (46):

∂M
∂μ
= − 1

c(2π)2
C. (62)

The physical interpretation of this equation is best understood
in 2d, where the analogue of equation (62) reads

∂M

∂μ
= − C1

2πc
, (63)

and C1 is the Chern number. We address a finite sample cut
from a Chern insulator. Owing to equations (2) a macroscopic
current of intensity I = cM circulates at the edge of
any two-dimensional uniformly magnetized sample, hence
equation (63) yields

dI

dμ
= −C1

2π
. (64)

The role of chiral edge states is elucidated, for exam-
ple [106, 107], by considering a vertical strip of width �, where
the currents at the right and left boundaries are ±I . The net
current vanishes insofar asμ is constant throughout the sample.
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When an electric field E is applied across the sample, the right
and left chemical potentials differ by �μ = E� and the two
edge currents no longer cancel. Our equation (64) is consistent
with the known quantum Hall results. In fact, according to
equation (64), the net current is �I � −C1�μ/2π , while the
transverse conductivity is defined by �I = σT E�. We thus
arrive at equation (49).

Remarkably, the above equations state that the contri-
bution of edge states is indeed a bulk quantity, and can be
evaluated in the thermodynamic limit by adopting periodic
boundary conditions where the system has no edges. As
already observed, this feature may look counterintuitive, but
this fascinating behaviour has been known for more than 20
years in QHE theory [85, 106].

(iii) In a metal bothμ-derivatives contribute. The first term
∂M1/∂μ is nontopological and has bulk nature. It involves
only the states at the Fermi level, and simply measures the
magnetization change due to the change in occupation of these
bulk states. At variance with this, ∂M2/∂μ is topological and is
related to the contribution of chiral boundary states in a finite
sample, very similarly to the Chern insulator case discussed
above.

8.5. Transport

In this section we allow for space inhomogeneity at a
macroscopic scale. If r is a macroscopic coordinate, we
may define a local chemical potential μ(r) and a local
inverse temperature β(r). Replacing them in equations (56)
and (59) we get the expression for the local magnetization
M(r) = M1(r) + M2(r). According to equations (2), a
macroscopic dissipationless current flows in the bulk of the
material. However, this ‘magnetization current’ is divergence-
free, hence unobservable in a transport experiment (for a
thorough discussion see [108]).

Let g(k, r) be the out-of-equilibrium phase space
distribution of the carriers. In the semiclassical theory of
transport [96] the carriers are actually wavepackets in a
neighbourhood of the Fermi level. In the simple case where
a single band crosses the Fermi level, and in the absence of
a mechanical force, the wavepacket velocity is simply ṙ =
∂εk/∂k, hence the current density seems to be

j(r) = − 1

(2π)3

∫

BZ
dk g(r,k) ṙ. (65)

This is not quite correct: since the wavepacket rotates around
its centre, there is an extra contribution to the current.
According to [109] the complete expression is

j(r) = − 1

(2π)3

∫

BZ
dk g(r,k) ṙ

+ ∇ × c

(2π)3

∫

BZ
dk f (r,k)m(k)

= − 1

(2π)3

∫

BZ
dk g(r,k) ṙ+ c∇ ×M1(r), (66)

where g(r,k) is approximated with the equilibrium f (r,k) in
the extra term for a linear order expression.

Equation (66) is the expression for the physical current,
but this is not yet the transport current. As shown by Xiao
et al [24] the contribution from the unobservable magnetization
current (discussed above) must be discounted. The correct
expression for the transport current is

jtr(r) = j(r)− c∇ ×M(r)

= − 1

(2π)3

∫

BZ
dk g(r,k) ṙ− c∇ ×M2(r). (67)

The first term therein explicitly depends on the out-of-
equilibrium g(r,k), hence on the details of relaxation
processes. The second term, instead, is independent of
relaxation processes and is therefore an intrinsic linear
response of the system, having geometrical origin; we focus
on this second term only in the following, calling it j2(r).
If we assume the system in thermal equilibrium, hence β(r)
constant, then ∂/∂rβ = ∂μ/∂rβ ∂/∂μ, and equation (67)
yields

1

c
j2,α = −εαβγ ∂M2,γ

∂rβ
= −εαβγ ∂μ

∂rβ

∂M2,γ

∂μ
, (68)

where εαβγ is the antisymmetric tensor, and now equation (61)
can be used.

If we transform the Berry curvature from vector to tensor
form—equations (47) and (48)—we get �n,αβ = εαβγ�n,γ ,
where εαβγ is the antisymmetric tensor. Equation (61) then
yields

εαβγ
∂M2,γ

∂μ
= −1

c
σαβ, (69)

where σαβ is the topological AHE conductivity, equation (49).
Finally equation (68) is rewritten for the transport current as

jα = σαβ ∂μ
∂rβ

. (70)

If we replace ∇μ with the electric field, equation (70) becomes
identical to the familiar formula for the transverse conductivity.
The results of [24] prove thus that the Einstein relation
continues to hold for transverse conductivity in absence of
time-reversal symmetry. We note that the formula given here
addresses intrinsic effects only.

8.6. Dichroic f -sum rule

The differential absorption of left and right circularly polarized
light by magnetic materials is known as magnetic circular
dichroism. In the past 15 years or so a sum rule for x-ray
magnetic circular dichroism (XMCD) has been extensively
used at synchrotron facilities to obtain information about
orbital magnetism in solids. The relationship between the M
measured via the XCMD sum rule and the M provided by
the modern theory has been addressed in 2008 by Souza and
Vanderbilt [26], and will be reviewed here.

A very important caveat is in order at the very beginning.
We are going to assume in the following that the KS energies
and orbitals—both occupied and empty—provide a faithful
excitation spectrum of the crystalline system. Clearly, this is
a severe approximation, whose accuracy may be doubtful in
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many materials. We recall, nonetheless, that even the ground-
state magnetization is—strictly speaking—beyond the reach of
standard DFT: see the discussion in section 4. The sum rule
discussed here is of course exact for noninteracting electrons.

If we define as 〈σ 〉′′A the frequency-integrated XCMD
spectrum in vector notation, the main result of [26] is, in atomic
Hartree units,

〈σ ′′A〉 = πcM1 (71)

where M1 is given by equation (56). In other words, only
one of the two (gauge-invariant) terms into which we have
partitioned M is measured by the XMCD spectrum. The term
M2, equation (57), is missing; its quantitative importance is
unknown.

Equation (71) is proved for normal insulators only—
once more, via a transformation to WFs—although it is
possibly valid for Chern insulators and metals as well. In the
interpretation of [26] the XCMD sum rule probes the gauge-
invariant part of the self-rotation of the occupied WFs.

9. Conclusions

We have reviewed here, on a common ground, both the
modern theory of polarization P and the modern theory
of orbital magnetization M. The former theory (or its
existence at least) is well known in the electronic structure
community. It is implemented as a standard option in most
codes [13–15, 17, 16, 18], has revolutionized the theory of
ferroelectric and piezoelectric materials [19–21], and started
reaching—although very slowly—the elementary textbooks.
The theory of magnetization, instead, is still in its infancy.
The very first ab initio implementations [28, 29] are appearing
at the time of writing (2010). Previous computations of
orbital magnetization in solids have invariantly relied on the
uncontrolled muffin-tin approximation.

The modern theories address P and M in zero macroscopic
fields E and B. The meaning of this apparently counterintuitive
situation is thoroughly discussed (section 2).

The presentation given here is strictly within a KS scheme,
whose limitations are however discussed (section 4). We
provide formulae both for crystalline solids, where P and M
are Brillouin-zone integrals (discretized for numerical work),
and for noncrystalline condensed systems in a single k-point
supercell framework.

At the KS level both theories are in (I dare saying)
a definitive shape. Instead, when dealing with explicitly
correlated wavefunctions (such as within quantum Monte
Carlo), a successful formula exists for P [6, 7]—not discussed
here—but not yet for M.
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